Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lai-Jin Tian,* Wu-Tao Mao, Yu-Xi Sun and Xi-Cheng Liu

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.042$
$w R$ factor $=0.094$
Data-to-parameter ratio $=19.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bromo(N, N-dimethyldithiocarbamato- $\kappa^{2} S, S^{\prime}$)diphenyltin(IV)

The Sn atom in the title compound, $\left[\mathrm{SnBr}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)\right]$, adopts a distorted $\mathrm{SnBrC}_{2} \mathrm{~S}_{2}$ trigonal-bipyramidal environment.

Comment

The structures of some chloro-diorgano-tin N, N-dialkyldithiocarbamates, $R_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CN} R^{\prime}{ }_{2}\right) \mathrm{Cl}$ have shown that the Sn atom exists in a distorted $\mathrm{SnClC}_{2} \mathrm{~S}_{2}$ trigonal-bipyramidal environment (Tiekink, 1992; Tiekink et al., 1999; Yin et al., 2001). In the bromine-containing title compound, (I), the Sn atom is also five-coordinate and possesses a distorted trigonalbipyramidal geometry (Fig. 1 and Table 1). The equatorial plane is defined by two C atoms (C 4 and C 10) of the phenyl groups and the more tightly held S 1 atom from the asymmetrically chelating dithiocarbamate ligand, and the axial positions are occupied by the less tightly held atom S 2 and atom Br 1 . The tin atom lies 0.1475 (5) \AA out of the SC_{2} trigonal plane in the direction of the Br atom. The dithiocarbamate ligand chelates in an asymmetric manner to the Sn atom with a difference in the $\mathrm{Sn}-\mathrm{S}$ bond lengths of some $0.214 \AA$; the average $\mathrm{Sn}-\mathrm{S}$ bond distance is $2.5605(16) \AA$, which is similar to those found in $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right) \mathrm{Cl}$ (Dakternieks et al., 1992), $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNCy}_{2}\right) \mathrm{Cl}$ (Basu Baul \& Tiekink, 1993), $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNEtCy}\right) \mathrm{Cl}$ (Hall \& Tiekink, 1995) and $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ $\left.\mathrm{CH}_{2}\right)_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}$ (Yin et al., 2001). The thiocarbamate $\mathrm{C}-\mathrm{S}$ bond lengths suggest that the bonding of this group is localized.

(I)

Experimental

A solution of $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.36 \mathrm{~g}, 2 \mathrm{mmol})$ in 30 ml of hot acetone was added dropwise to a solution of diphenyltin dibromide $(0.87 \mathrm{~g}, 2 \mathrm{mmol})$ in 30 ml of the same solvent. The reaction mixture was stirred for about an hour under reflux, and then cooled to about 273 K . The NaBr formed was removed by filtration, and the solvent was evaporated under reduced pressure. The solid obtained was recrystallized from trichloromethane-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) and crystals of

Received 21 June 2006
Accepted 22 June 2006
\qquad
(I) were obtained from dichloromethane-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) by slow evaporation at 298 K (yield 76.3%, m.p. 406-407 K). Analysis found: C 38.12, H 3.27, N 2.83\%; calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNS}_{2} \mathrm{Sn}$: C 38.09, H 3.41, N 2.96%.

Crystal data

$\left[\operatorname{SnBr}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NS}_{2}\right)\right]$
$M_{r}=473.01$
Monoclinic, $C 2 / c$
$a=1.560(8) \AA$
$b=9.133(3) \AA$
$c=21.838(10) \AA$
$\beta=91.772(6)^{\circ}$
$V=3501(3) \AA^{3}$
Data collection

Bruker APEX area-detector

 diffractometerφ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.606, T_{\text {max }}=0.692$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.094$
$S=1.04$
3634 reflections
183 parameters
H -atom parameters constrained

$Z=8$

$D_{x}=1.795 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\mu=3.97 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless $0.14 \times 0.10 \times 0.10 \mathrm{~mm}$

9614 measured reflections 3634 independent reflections 2687 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$
$\theta_{\text {max }}=26.5^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.029 P)^{2} \\
&+3.0728 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{C} 10$	$2.124(5)$	$\mathrm{Sn} 1-\mathrm{S} 2$	$2.6674(16)$
$\mathrm{Sn} 1-\mathrm{C} 4$	$2.132(5)$	$\mathrm{C} 1-\mathrm{S} 1$	$1.744(5)$
$\mathrm{Sn} 1-\mathrm{S} 1$	$2.4537(15)$	$\mathrm{C} 1-\mathrm{S} 2$	$1.701(6)$
$\mathrm{Sn} 1-\mathrm{Br} 1$	$2.6098(11)$		
$\mathrm{C} 10-\mathrm{Sn} 1-\mathrm{C} 4$	$111.87(19)$	$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{Br} 1$	$87.02(5)$
$\mathrm{C} 10-\mathrm{Sn} 1-\mathrm{S} 1$	$113.58(14)$	$\mathrm{C} 10-\mathrm{Sn} 1-\mathrm{S} 2$	$97.45(15)$
$\mathrm{C} 4-\mathrm{Sn} 1-\mathrm{S} 1$	$133.21(14)$	$\mathrm{C} 4-\mathrm{Sn} 1-\mathrm{S} 2$	$93.80(14)$
$\mathrm{C} 10-\mathrm{Sn} 1-\mathrm{Br} 1$	$98.05(15)$	$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 2$	$70.05(5)$
$\mathrm{C} 4-\mathrm{Sn} 1-\mathrm{Br} 1$	$97.21(14)$	$\mathrm{Br} 1-\mathrm{Sn} 1-\mathrm{S} 2$	$156.05(4)$

H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, and $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms).
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China and Qufu Normal University for supporting this work.

References

Basu Baul, T. S. \& Tiekink, E. R. T. (1993). Main Group Met. Chem. 16, 201207.

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dakternieks, D., Zhu, H., Masi, D. \& Mealli, C. (1992). Inorg. Chem. 31, 36013606.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hall, V. J. \& Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 217-223.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tiekink, E. R. T. (1992). Main Group Met. Chem. 15, 161-186.
Tiekink, E. R. T., Hall, V. J. \& Buntine, M. A. (1999). Z. Kristallogr. 214, 124134.

Yin, H.-D., Wang, C.-H., Ma, C.-L., Wang, Y. \& Zhang, R.-F. (2001). Chin. J. Org. Chem. 21, 1117-1121.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

